
You’re thinking I’m a good person
For two instruments and electronics (~15min)

Introductory notes

You’re thinking I’m a good person is a 15-minute piece for two instruments, a player piano and
live electronics. The theme of this piece is related to social awareness, more specifically to its most
well-known feature: empathy. Here, two opposing currents are confronted against each other by
algorithms in order to inspire the composition and the performance itself.

This piece is highly flexible in terms of instrumentation, as it is strongly based on a
continuous sound approach together with some theatrical performance. Instruments, however,
should be capable of producing a continuous sound in a great range with very little attack (i.e. using
techniques such as circular breathing, continuous bowing, or sustained by digital effects).

Musicians with interest in free improvisation will certainly be a better match to this
experience.

Scene

The figure below illustrates how the stage should be organized for the execution of this
piece. The unnamed connections are all audio signals, except the MIDI communication coming from
the computer to the Disklavier. Although not explicitly indicated in the diagram, the live electronics
performer is encouraged to use an external audio device and a MIDI controller to manipulate the
effects as described in the next section.

Setup requirements

Hardware

• A computer with an audio/MIDI interface
• A pair of speakers
• Stage spotlights
• A digital player piano
• Two microphones to amplify instruments 1 and 2
• Two microphones to amplify the player piano

Software

• GNU/Linux distribution (might also run on other systems)
• Python version 3 and a libraries installed as documented in the git repository located

at https://github.com/tiagovaz/ detaching
• Carla or similar audio plugins host with a similar effects chain as illustrated in the

table bellow

Performance instructions

The piece is structured in 3 scenes. Each scene is controlled by a computer code to be
executed by the live electronics performer operating the computer. It’s recommended to open 3
terminals, one for each Python script. Each script can be run through the command “python3
sceneX.py” (where X is 1, 2 and 3). This command opens a simple interface in which the Start/Stop
button should be called sequentially for each scene, as presented in the picture bellow:

The live electronics performer also controls the live effects applied to instruments and to
the piano, as described in the attached score. A patch file containing the enchained audio objects
and MIDI assignments is provided in the repository. This file (carla_patch.carxp) is to be used
by Carla audio plugin host software. Any other similar software can be used once the following chain
is respected (details of each of these effects are present in the table following the image) :

https://github.com/tiagovaz/detaching

The instructions in the next lines are to be presented to – and assimilated by – all musicians
and the lightning operator. Musicians 1 and 2 won’t be provided with a score during the
performance of scenes 1 and 2. Gesture-based cues by musician 3 (the live electronics performer in
the picture) can be an option for them, if necessary. In Scene 3, a music sheet is provided for
musicians 1 and 2 and should be followed as described bellow.

Note: as in May 2022, a video recording is available at the Music Faculty of Université de Montréal’s Youtube
channel and can be used as a reference for the reproduction of the piece: https://www.youtube.com/watch?
v=47xVxk-pEM4

Scene 1

• Lights off. The TTS-driven voice introduces the piece by proclaiming the Speech #1
• Musicians 1 and 2 stand side-by-side in front of the Disklavier. They remain quiet; no

reaction is expected.
• Speech #2 is played.
• After about 10 seconds, lights progressively on the piano spot.
• Piano plays an algorithmic music and go crescendo for about a minute. Musicians stay

seated looking at void audience.
• Speech #3

Scene 2

• Speech #2 restarts: “Empathy works...”
• Regular lights on musicians during the speech.
• Same speech is presented 3 times and gets interrupted. After the third time (about

1min15s), musicians wait for a few seconds and start playing an air sound, as if they were
trying to perform a proper sound. They play as if the other didn’t exist.

• At some point (about 2min30s) the first empathy statement is presented. Musicians start
to improvise, keeping no musical dialogue between them. They can play short, noisy, and
contrasting sounds, as well as give some time to silence or degrading little phrases from
classical repertoire, as if trying to succeed a performance to the audience.

• At some point, after about 5min, a loud piano note is be played. From this time on,
musicians stand up and play more intensively, trying to overlap the other musicians’
sound, as a subtile competition.

• Once voices (Speech #4, #5 and #6) start overlapping each other, musicians stop playing and
leave the scene.

https://www.youtube.com/watch?v=47xVxk-pEM4
https://www.youtube.com/watch?v=47xVxk-pEM4

Scene 3

• Low lights spot the musicians. After about 10 seconds, regular lights spot the piano.
• Speech #7: “You must be so helpless, think of Mary...”
• When speech starts, musicians slowly bring their music stands with scores and place

them backing each other (so that musicians face each other).
• After the speech, the piano starts playing short notes. Musicians start getting ready to

play.
• Hight lights towards musicians as soon as they seem to be ready to play.
• At some point, the piano opens the sustain pedal. From that time on, musicians wait

about 10 seconds, quickly look at each other, then start playing their score.
• Right after they finish playing their parts, they leave the scene, put their instruments

aside, come back, take the score off the stand, take the stand with another hand and
leave the scene with them. This whole process should suggest a total indifference to the
music, and to each other; despite the fact that the music is kept playing due to the digital
effects.

• Speech #8
• About 10 seconds after musicians leave the scene, musicians lights slowly go off,

followed by piano lights going off.
• After another 10 seconds, all sound goes off.

“44 empathy statements that will make you the greatest listener”

Statement # Statement

01 You’re making total sense. 23 You are in a lot of pain here. I can feel it.

02 I understand how you feel. 24 It would be great to be free of this.

03 You must feel so hopeless. 25 That must have annoyed you.

04 I just feel such despair in you when you talk about this. 26 That would make me mad too.

05 You’re in a tough spot here. 27 That sounds frustrating.

06 I can feel the pain you feel. 28 That is very scary.

07 The world needs to stop when you’re in this much pain. 29 Well I agree with most of what you’re saying.

08 I wish you didn’t have to go through that. 30 I would have also been disappointed by that.

09 I’m on your side here. 31 That would have hurt my feelings also.

10 I wish I could have been with you in that moment. 32 That would make me sad too.

11 Oh, wow, that sounds terrible. 33 POOR BABY!

12 You must feel so helpless. 34 Wow, that must have hurt.

13 That hurts me to hear that. 35 I understand what you’re feeling.

14 I support your position here. 36 You are making a lot of sense to me.

15 I totally agree with you. 37 Okay, I think I get it. So what you’re feeling is…

16 You are feeling so trapped! 38 Let me try to paraphrase and summarize what you’re saying.

17 You are making total sense. 39 You’re saying…

18 That sounds like you felt really disgusted! 40 I would have trouble coping with that.

19 No wonder you’re upset. 41 What I admire most about what you’re doing is…

20 I’d feel the same way you do in your situation. 42 That would make me feel insecure.

21 I think you’re right. 43 That sounds a little frightening.

22 I see. Let me summarize: What you’re thinking here is… 44 Tell me what you see as your choices here.

AI-generated texts used in the piece (in order of appearance)

Text TTS wav file

01 The first nearly reliable way that emotions can arise is from direct experience with others. You’ll
remember the emotion you’re feeling in this session if you experienced the same emotion in a
previous session. Activation of your empathic awareness—and possible neurologic and neurological
effects—in others can affect your ability to quality-quantify comebacks for others in your life.

None
(text used in the video only)

02 Empathy works by increasing the activation of your empathic awareness in others, which literally
increases the effort of positive empathy work on their part. Thus, if you activate empathy near
others, empathically speaking, this will help them feel more closely and empathically attached to
you. It shouldn’t be surprising then, that empathy interactions also have a direct relationship to
empathy intensity.

intro.wav

03 You’re making total sense, note me. Let’s begin again, shall we? restart.wav

04 Oh, wow, that sounds terrible. Don’t waste your time learning style by imitating Beyoncé or learn to
enliven yourself with sensory terms like great’Ease, Adorable, Mellonicious! — because these styles
don’t exist yet. There will always be trouble on the underground level — even within the own
organization, and nobody with CREEPY IS BOYS (okay, so maybe Beyoncé isn’t some do-it-right
revolutionary self).

beyonce.wav

05 You must feel so helpless. Think of Mary, whom she will hold most dear: Action, noise, retreat,
purpose, right and wrong, fear, wonder, grief, gratitude, devotion, status, perverted idealism,
boundary usage, guilt, wrongdoing, beautiful imaginations, planned states, imaginal behavior, finds
ahead, offered knowledge, dietary patterns with dear remembering, ancestors, grandchildren,
singing, drama, fencing (fat cats killed babies’s babies completely uncountably), attacks.
Victimization. Victimization. Victimization.

mary.wav

06 I see. Let me summarize: What you’re thinking here is that you can make money from doing nothing,
and the only way to make money is to sell your services to companies. You have a very good point.
The problem is that your idea is an idea that is not particularly interesting. It's an idea that does not
make any money. It's a bad idea. That's why you're not getting rich, and that's why you're not doing
anything interesting.

money.wav

07 Another way that emotions can happen in a crowd is from previously unspecific empathic
reactions to stimuli. Annie, an 18-year-old classically trained musician, got her first emergency beat
early, spooked by the sounds.

18.wav

08 I see. Let me summarize: What you’re thinking here is that I'm not so bad. No. You're thinking I'm a
shit-stain. You're thinking I'm a terrible person. You're thinking I'm a creep. You're thinking I'm a
monster. You're thinking I'm a fucking lunatic. You're thinking I'm a dumbass. No. You're thinking
I'm a good person. You're thinking I'm a good person. You're thinking I'm a good person.

insult.wav

Proposed score for Scene 3 (can be adapted as needed)

0" 15'2'30" 8'30"

You're thinking I'm a good person Tiago Vaz, 2020

s
i
l
e
n
c
e

noise

s
i
l
e
n
c
e

s
i
l
e
n
c
e

speech #2

speech #1

speech #4

speech #3

speech #5

1
scene1.py

2
scene2.py

3
scene3.py

SCENE 1 SCENE 2 SCENE 3

40"

2'

Musicians 1 and 2 stand side-by-side
in front of the Disklavier. No reac�on is expected.

speech #2
speech #8

speech #2

Empathic statements all accross this act, provoking reac�ons from musicians 1 and 2

2'30"

5'

a�er 3rd piano sound,
start playing con�nous,
airy sound, pp -> mp

Speech interrupted
by the piano (x 3)

2'45"

PIANO INPUT pitched delay
crescendo together with the
Disklavier...

Disklavier play single notes
followed by synth resonance

INST 1/2 and PIANO Pitched delay
crescendo un�l a total cloudy sound...

speech #7

speech #6

evolve to short, noisy, and contras�ng
sounds, giving some �me to silence or
degrading li�le phrases from classical
repertoire, as if trying to succeed a
performance to the audience.

...more intensively, trying
to overlap the other
musicians’ sound, as a
sub�le compe��on.

overlapping
speeches: leave
the scene.

Resonance + bea�ngs

INST 1/2 INPUT pitched delay
crescendo together with the
instruments dynamics...

Sustain pedal, then in 10
seconds, quickly look at
each other and start
playing the provided
music sheet.

A�er speech #8,
close all effects,
then close GAIN

scene1.py

1 import random
2 from pyo import *
3 from instruments import Speech
4 import subprocess
5
6 pm_list_devices()
7
8 s = Server(audio=’jack’, duplex=0, nchnls=2)
9

10 # Open all MIDI output devices.
11 s.setMidiOutputDevice(99)
12
13 # Then boot the Server.
14 s.boot()
15
16 speech_intro = Speech([’intro.wav’], loop=0)
17 speech_intro.play()
18
19 # close pedal
20 s.ctlout(64, 0)
21
22 # set random-ish pattern time
23 pat_time = XnoiseDur(dist=11, min=15, max=20)
24 speech = Speech([’restart.wav’])
25
26 time_counter = 0
27 def time_events():
28 global s, time_counter, pat_time, pat
29 time_counter = time_counter + 1
30 print(time_counter)
31 print((pat_time.min, pat_time.max))
32
33 d = random.choice([0,1])
34 if d == 1:
35 s.ctlout(64, 0)
36 else:
37 s.ctlout(64, 127)
38
39 if time_counter == 10:
40 pat_time.max = 10
41 pat_time.min = 5
42
43 if time_counter == 20:
44 pat_time.max = 5
45 pat_time.min = .5
46
47 if time_counter > 50 and pat_time.min > .1:
48 pat_time.max = pat_time.min
49 pat_time.min = pat_time.min - .05

1

2

50
51 if time_counter == 50:
52 s.ctlout(64, 127)
53
54 if time_counter == 80:
55 pat_time.max = 100
56 pat_time.min = 100
57 vel = 50
58 dur = 2000
59 # Mega chord to end
60 s.makenote(pitch=20, velocity=vel, duration=dur, channel=1)
61 s.makenote(pitch=21, velocity=vel, duration=dur, channel=1)
62 s.makenote(pitch=22, velocity=vel, duration=dur, channel=1)
63 s.makenote(pitch=23, velocity=vel, duration=dur, channel=1)
64 s.makenote(pitch=24, velocity=vel, duration=dur, channel=1)
65 s.makenote(pitch=25, velocity=vel, duration=dur, channel=1)
66 s.makenote(pitch=26, velocity=vel, duration=dur, channel=1)
67 s.makenote(pitch=27, velocity=vel, duration=dur, channel=1)
68 s.makenote(pitch=28, velocity=vel, duration=dur, channel=1)
69 s.makenote(pitch=29, velocity=vel, duration=dur, channel=1)
70 s.makenote(pitch=40, velocity=vel, duration=dur, channel=1)
71 s.makenote(pitch=81, velocity=vel, duration=dur, channel=1)
72 s.makenote(pitch=82, velocity=vel, duration=dur, channel=1)
73 s.makenote(pitch=83, velocity=vel, duration=dur, channel=1)
74 s.makenote(pitch=84, velocity=vel, duration=dur, channel=1)
75 s.makenote(pitch=85, velocity=vel, duration=dur, channel=1)
76 s.makenote(pitch=86, velocity=vel, duration=dur, channel=1)
77 s.makenote(pitch=87, velocity=vel, duration=dur, channel=1)
78 s.makenote(pitch=88, velocity=vel, duration=dur, channel=1)
79 s.makenote(pitch=89, velocity=vel, duration=dur, channel=1)
80
81 if time_counter == 85:
82 speech.play()
83
84 if time_counter == 90:
85 s.ctlout(64, 0)
86 pat.stop()
87
88 # Actual time counter
89 global_time = Pattern(time_events, 1).play()
90
91 pitch = Phasor(freq=1, mul=48, add=40)
92
93 count = 0
94 mul_count = 0
95 freq_count = 0
96
97 def midi_event():
98 global count, mul_count, pitch, freq_count, s
99

100 pit = int(pitch.get())

3

101
102 # each 23 seconds
103 mul_count = mul_count + 1
104 if mul_count == 23:
105 pitch.add = pitch.add + 1
106 print("MUL: ", pitch.mul)
107 mul_count = 0;
108
109 # each 35 seconds
110 freq_count = freq_count + 1
111 if freq_count == 35:
112 pitch.freq = random.randint(1,30)
113 print("FREQ: ", pitch.freq)
114 freq_count = 0;
115
116 if count == 0 and random.randint(0,1) < .5: # half chance
117 vel = random.randint(40, 70)
118 dur = random.randint(9,2000)
119 #chord
120 s.makenote(pitch=pit+12, velocity=vel, duration=dur, channel=1)
121 s.makenote(pitch=pit+14, velocity=vel, duration=dur, channel=1)
122 s.makenote(pitch=pit+16, velocity=vel, duration=dur, channel=1)
123 else:
124 vel = random.randint(50, 80)
125 dur = random.randint(50, 80)
126 s.makenote(pitch=pit, velocity=vel, duration=dur, channel=1)
127
128 count = (count + 1) % random.randint(12,13)
129
130 print("pitch: %d, velocity: %d, duration: %d" % (pit, vel, dur))
131
132 def start_pat():
133 global pat
134 pat.play()
135
136 # Generates a MIDI event every 125 milliseconds.
137 pat = Pattern(midi_event, pat_time)
138 a = CallAfter(start_pat, 30)
139
140 s.gui(locals())

scene2.py

1 from pyo import *
2 import random
3 import os
4 from instruments import *
5
6 s = Server(audio=’jack’, duplex=0, nchnls=2)
7 s.setMidiOutputDevice(99)
8 s.boot()
9

10 m = MyFreezing()
11 m2 = MyFreezing()
12 m3 = MyFreezing()
13 m.stop()
14 m2.stop()
15 m3.stop()
16
17 # Open pedal
18 s.ctlout(64, 127)
19
20 ################# BEGIN GESTURE 00 ##################
21
22 intro_speech = Speech([’intro.wav’])
23 sines = IntroSines()
24
25 def g00():
26 global intro_speech
27 intro_speech.play()
28
29 g00Time = Metro(time=Randi(31, 39)).stop()
30 g00Func = TrigFunc(g00Time, g00)
31
32 ################# BEGIN GESTURE 01 ##################
33
34 piano_flag = True
35
36 def g01():
37 global piano_flag
38 sines.play()
39 intro_speech.stop()
40 if piano_flag == True:
41 s.makenote(pitch=22, velocity=random.randint(30, 45), duration=20000)
42 s.makenote(pitch=79, velocity=random.randint(60, 70), duration=20000)
43 s.makenote(pitch=91, velocity=random.randint(70, 90), duration=20000)
44 m.pvb.setPitch(random.uniform(0.90, 1.1))
45 m.refresh()
46
47 g01Time = Metro(time=Randi(20, 35)).stop()
48 g01Func = TrigFunc(g01Time, g01)
49

5

50 ################# BEGIN GESTURE 02 ##################
51
52 high = HighFreq(mul=.05)
53
54 def g02():
55 global high
56 high.play()
57
58 g02Time = Metro(time=Randi(10, 30)).stop()
59 g02Func = TrigFunc(g02Time, g02)
60
61 ################# BEGIN GESTURE 03 ##################
62
63 snoise = SmoothNoise(mul=.25, dur=0.8)
64
65 def g03():
66 global snoise
67 snoise.play()
68
69 g03Time = Metro(time=Randi(10, 30)).stop()
70 g03Func = TrigFunc(g03Time, g03)
71
72 ################# BEGIN GESTURE 04 ##################
73
74 def g04():
75 s.makenote(pitch=22, velocity=random.randint(60, 70), duration=20000)
76 s.makenote(pitch=79, velocity=random.randint(70, 90), duration=20000)
77 s.makenote(pitch=91, velocity=random.randint(90, 100), duration=20000)
78 m.pvb.setPitch(random.uniform(0.9, 1.1))
79 m2.pvb.setPitch(random.uniform(0.9, 1.1))
80 m3.pvb.setPitch(random.uniform(0.9, 1.1))
81 m.refresh()
82 m2.refresh()
83 m3.refresh()
84 # send midi note
85
86 g04Time = Metro(time=Randi(20, 25)).stop()
87 g04Func = TrigFunc(g04Time, g04)
88
89 ###################### SCORE ########################
90
91 time = -1
92
93 # Random speech to be called
94 speech_random = Speech(soundfile=os.listdir("44_statements"))
95 speech_random_time = Metro(time=Randi(25, 40)).stop()
96 speech_random_func = TrigFunc(speech_random_time, speech_random.play)
97
98 # Random speech to be called 2
99 speech_random2 = Speech(soundfile=os.listdir("44_statements"))

100 speech_random_time2 = Metro(time=Randi(10, 23)).stop()

6

101 speech_random_func2 = TrigFunc(speech_random_time2, speech_random2.play)
102
103 # GPT2 texts right before interlude
104 interlude_text = Speech(os.listdir(’texts_speech’))
105 interlude_text_time = Metro(time=Randi(25, 40)).stop()
106 interlude_text_func = TrigFunc(interlude_text_time, interlude_text.play)
107
108 def score():
109 global time, m, m2, m3, interlude_text, piano_flag, g01Time
110 time += 1
111 high.setDur(random.uniform(0.5, 1.5))
112 snoise.setDur(random.uniform(0.5, 1.5))
113
114 if time == 1:
115 print(time)
116 m.play()
117 g00Time.play()
118
119 if time == 50:
120 print(time)
121 m2.play()
122 g01Time.play()
123
124 if time == 80:
125 print(time)
126 g00Time.stop()
127
128 if time == 120:
129 print(time)
130 piano_flag = False
131
132 if time == 140:
133 print(time)
134 speech_random_time.play()
135
136 ## Two minutes no piano only flute and voice
137 if time == 200:
138 print(time)
139 g04Time.play() # starts new piano with low notes
140 g01Time.stop() # stops initial piano
141 speech_random_time.stop()
142 m3.play()
143
144 if time == 260:
145 print(time)
146 g02Time.play() # high pitch
147
148 if time == 270:
149 print(time)
150 interlude_text_time.play()
151

7

152 if time == 280:
153 print(time)
154 g04Time.stop() # stops all piano
155 g03Time.play() # snoise
156 speech_random_time.setTime(Randi(5, 10)) # overlapping voices
157 speech_random_time.play() # overlapping voices
158
159 # stop everything but high/snoise and call the serial (part3) script
160 if time == 300:
161 speech_random_time2.play()
162
163 if time == 315:
164 vel = 50
165 dur = 2000
166
167 s.ctlout(64, 127)
168
169 s.makenote(pitch=20, velocity=vel, duration=dur, channel=1)
170 s.makenote(pitch=22, velocity=vel, duration=dur, channel=1)
171 s.makenote(pitch=24, velocity=vel, duration=dur, channel=1)
172 s.makenote(pitch=26, velocity=vel, duration=dur, channel=1)
173 s.makenote(pitch=28, velocity=vel, duration=dur, channel=1)
174 s.makenote(pitch=80, velocity=vel, duration=dur, channel=1)
175 s.makenote(pitch=82, velocity=vel, duration=dur, channel=1)
176 s.makenote(pitch=84, velocity=vel, duration=dur, channel=1)
177 s.makenote(pitch=86, velocity=vel, duration=dur, channel=1)
178 s.makenote(pitch=88, velocity=vel, duration=dur, channel=1)
179
180 print(time)
181 m2.stop()
182 m3.stop()
183 m.stop()
184 sines.stop()
185 g01Time.stop()
186 g02Time.stop()
187 g03Time.stop()
188 speech_random_time.stop()
189 speech_random_time2.stop()
190 interlude_text_time.stop()
191
192 mainTime = Metro(time=1).play()
193 mainFunc = TrigFunc(mainTime, score)
194
195 s.gui(locals())

scene3.py

1 import random
2 from pyo import *
3 from instruments import *
4 import time
5
6 pm_list_devices()
7
8 s = Server(audio=’jack’, duplex=0, nchnls=2)
9

10 # Open all MIDI output devices.
11 s.setMidiOutputDevice(99)
12
13 # Then boot the Server.
14 s.boot()
15
16 s.ctlout(64, 127)
17 speech_start = Speech([’mary.wav’], loop=True)
18 speech_start.play()
19
20 # Kinderstuck serial sequence
21 notes_seq = [3, 4, 0, 11, 10, 1, 2, 9, 8, 7, 6, 5]
22
23 index = 0
24 index2 = 0
25 index3 = 0
26 pedal_flag = True
27
28 def intro_event():
29 global s, pat, speech_start
30 # close pedal
31 s.ctlout(64, 0)
32 pat.play()
33 speech_start.stop()
34
35 def midi_event():
36 global notes_seq, index, pat2, pat, s
37
38 index = index + 1
39 n, d = divmod(index, 12)
40 print(index, n, d)
41
42 vel = random.randint(25, 35)
43 dur = random.randint(20, 1000)
44
45 octave = random.choice([48, 60])
46 s.makenote(pitch=notes_seq[d]+octave, velocity=vel, duration=dur, channel=1)
47 if n == 1:
48 s.makenote(pitch=notes_seq[d]+octave+12, velocity=vel, duration=dur, channel=1)
49

9

50 print("pitch: %d, velocity: %d, duration: %d" % (notes_seq[d], vel, dur))
51
52 if n == 2:
53 pat2.play()
54 final_event2Time.play()
55
56 event2_part2 = 0
57 event2_flag = False
58
59 def midi_event2():
60 global notes_seq, index2, pat2, pat, event2_part2, event2_flag, pedal_flag
61 if pedal_flag == True:
62 s.ctlout(64, 127)
63 pedal_flag = False
64
65 vel = random.randint(20, 30)
66 dur = 100
67
68 octave = random.choice([60, 72])
69 s.makenote(pitch=notes_seq[index2]+octave, velocity=vel, duration=dur, channel=1)
70 if event2_flag == True:
71 s.makenote(pitch=notes_seq[index2]+octave-14, velocity=vel, duration=dur, channel

=1)
72
73 print("pitch: %d, velocity: %d, duration: %d" % (notes_seq[index2], vel, dur))
74
75 index2 = index2 + 1
76 if index2 == 12:
77 final_eventTime.play()
78 index2 = 0
79 event2_flag = True
80
81 event2_part2 = event2_part2 + 1
82 if event2_part2 == 48:
83 pat3.play()
84
85 speech_final = Speech([’insult.wav’])
86 def midi_event3():
87 global notes_seq, index3, pat3, speech_final
88
89 vel = random.randint(20, 30)
90 dur = 100
91
92 octave = random.choice([24, 84, 96])
93 s.makenote(pitch=notes_seq[index3]+octave, velocity=vel, duration=dur, channel=1)
94 s.makenote(pitch=notes_seq[index3]+octave-14, velocity=vel, duration=dur, channel=1)
95 s.makenote(pitch=notes_seq[index3]+octave-16, velocity=vel, duration=dur, channel=1)
96 print("pitch: %d, velocity: %d, duration: %d" % (notes_seq[index3], vel, dur))
97
98 index3 = index3 + 1
99 if index3 == 12:

10

100 index3 = 0
101 pat.stop()
102 pat2.stop()
103 pat3.stop()
104 speech_final.play()
105
106 snoise = SmoothNoise(mul=.25, dur=0.3)
107 high = HighFreq(mul=0.5)
108
109 def final_event():
110 global high
111 high.setDur(random.uniform(0.3, 0.6))
112 high.play()
113
114 final_eventTime = Metro(time=Randi(10, 20)).stop()
115 final_eventFunc = TrigFunc(final_eventTime, final_event)
116
117 def final_event2():
118 global snoise
119 snoise.setDur(random.uniform(0.3, 0.6))
120 snoise.play()
121
122 final_event2Time = Metro(time=Randi(10, 20)).stop()
123 final_event2Func = TrigFunc(final_event2Time, final_event2)
124
125 # set random-ish pattern time
126 pat_time = XnoiseDur(dist=11, min=.1, max=8)
127 pat = Pattern(midi_event, pat_time)
128
129 # set random-ish pattern time
130 pat_time2 = XnoiseDur(dist=11, min=0.5, max=10)
131 pat2 = Pattern(midi_event2, pat_time2)
132
133 # set random-ish pattern time
134 pat_time3 = XnoiseDur(dist=11, min=.1, max=4)
135 pat3 = Pattern(midi_event3, pat_time3)
136
137 a = CallAfter(intro_event, random.randint(30,40))
138
139 s.gui(locals())

instruments.py

1 import random
2 from pyo import *
3
4 ########### INSTRUMENTS ##########################
5
6 class Speech():
7 def __init__(self, soundfile=[], loop=False, mul=.5, fadein=.01, fadeout=.01,

duration=0, chnl=0, inc=1):
8 self.amp = Fader(fadein=fadein, fadeout=fadeout, dur=duration, mul=mul)
9 self.chnl = chnl

10 self.inc = inc
11 self.soundfile = soundfile
12 self.soundfile_to_play = random.choice(soundfile)
13 self.player = SfPlayer(self.soundfile_to_play, mul=[self.amp/2., self.amp/1.95],

loop=loop).stop()
14 self.player_rev = Freeverb(self.player, size=[.3,.25], damp=.6, bal=.4, mul=.8).

out(chnl=self.chnl, inc=self.inc)
15
16 def setDur(self, dur):
17 self.amp.dur = dur
18 return self
19
20 def play(self):
21 self.player.setSound(random.choice(self.soundfile))
22 self.player.play()
23 self.amp.play()
24 return self
25
26 def stop(self):
27 self.amp.stop()
28 return self
29
30 def getOut(self):
31 return self.amp
32
33 class IntroSines():
34 def __init__(self, freq=[3000, 3000.01, 3000.03], harms=400, mul=.8):
35 self.amp = Fader(fadein=10, fadeout=10, dur=0, mul=mul)
36 self.sines = Blit(freq=freq, harms=harms, mul=self.amp * .01).out()
37 self.rev = Freeverb(self.sines, size=.84, damp=.87, bal=.9, mul=self.amp * .2).

out()
38
39 def setDur(self, dur):
40 self.amp.dur = dur
41 return self
42
43 def play(self):
44 self.amp.play()
45 return self

12

46
47 def stop(self):
48 self.amp.stop()
49 return self
50
51 def getOut(self):
52 return self.amp
53
54
55 class HighFreq():
56 def __init__(self, freq=[11200, 11202], dur=.4, mul=.4):
57 self.amp = Fader(fadein=.01, fadeout=.01, dur=dur, mul=mul)
58 self.sine = SineLoop(freq=freq, mul=self.amp * .05).out()
59 self.rev = Freeverb(self.sine, size=.84, damp=.87, bal=.9, mul=self.amp * .2).out

()
60
61 def setDur(self, dur):
62 self.amp.dur = dur
63 return self
64
65 def play(self):
66 self.amp.play()
67 return self
68
69 def stop(self):
70 self.amp.stop()
71 return self
72
73 def getOut(self):
74 return self.amp
75
76 class SmoothNoise():
77 def __init__(self, dur=1.3, mul=.4):
78 self.amp = Fader(fadein=.1, fadeout=.01, dur=dur, mul=mul)
79 self.noise = PinkNoise(self.amp * .01).mix(2).out()
80
81 def setDur(self, dur):
82 self.amp.dur = dur
83 return self
84
85 def play(self):
86 self.amp.play()
87 return self
88
89 def stop(self):
90 self.amp.stop()
91 return self
92
93 def getOut(self):
94 return self.amp
95

13

96 def setInput(self, x, fadetime=.001):
97 self.input.setInput(x, fadetime)
98
99 class MyFreezing():

100 def __init__(self, mul=1):
101 global s
102 f = ’sound_bank/444166__cloe-king__wine-glass-ring.wav’
103 f_len = sndinfo(f)[1]
104 #s.startoffset = f_len
105
106 self.globalamp = Delay(Fader(fadein=100, dur=0).play(), delay=f_len, maxdelay=

f_len)
107
108 src = SfPlayer(f, loop=True, mul=0.8)
109
110 # When this number increases, more analysis windows are randomly used.
111 spread = Sig(0.1, mul=0.1)
112
113 # The normalized position where to freeze in the sound.
114 index = Sig(0.25, add=Noise(spread))
115
116 self.pva = PVAnal(src, size=4096, overlaps=8)
117 self.pvb = PVBuffer(self.pva, index, pitch=1.02)
118 self.pvv = PVVerb(self.pvb, revtime=0.999, damp=0.995)
119 self.pvs = PVSynth(self.pvv, mul=0.3)
120 self.rev = STRev(self.pvs, roomSize=1, revtime=1)
121 self.outsig= Delay(self.rev, delay=.1, feedback=0.2, mul=self.globalamp * mul).

stop()
122
123 def play(self):
124 self.pvb.play()
125 self.outsig.out()
126
127 def stop(self):
128 self.outsig.stop()
129
130 def refresh(self):
131 self.play()

