
You can’t un-neighbor your neighbor
For player piano and electronics (~15min)

Introductory notes

“Most personalized filters are based on a three-step model. First, you figure
out who people are and what they like. Then, you provide them with content
and services that best fit them. Finally, you tune to get the fit just right. Your
identity shapes your media. There’s just one flaw in this logic: Media also
shape identity. And as a result, these services may end up creating a good fit
between you and your media by changing. . . you.”

“The Filter Buble”, Eli Parisier, 2011

You can’t un-neighbor your neighbor is a 15-minute piece composed in 3 scenes. The piece
requires a prepared piano player (i. e. A Disklavier), a computer, a pair of speakers, a pianist, and a live
electronics performer. The player piano is simultaneously controlled by a live-generated
performance-rnn and by a live electronics performer manipulating a set of algorithms. The
performance-rnn is generated through a provided Python script which uses a pre-trained Magenta
PerformanceRNN model to produce the MIDI files.

The pianist follows a minimal set of instructions for preparing and playing the piano together
with the algorithms, all throughout the performance.

Scene

The figure below illustrates how the stage should be organized for the execution of this
piece. Although not explicitly indicated in the diagram, the live electronics performer is encouraged
to use an external audio device and a MIDI controller to manipulate both the player piano and the
effects, as described in the next section.

Setup requirements

Hardware

• A computer with an audio/MIDI interface
• A MIDI controller
• A pair of speakers
• A digital player piano (i. e. a Disklavier)
• Two microphones to amplify the player piano (on the soundboard)
• Two contact microphones to amplify the mechanical structure under the player piano

Software

• GNU/Linux distribution (might also run on other systems)
• Python version 3 and libraries installed as documented in the git repository located

at https://github.com/tiagovaz/ detaching
• Carla or similar audio plugins host with a similar effects chain as illustrated in the

table bellow

General instructions

Once all hardware and software are set up by the instructions provided in the repository,
two steps should be followed for the performance to take place:

1. Generate the performance-rnn MIDI sequences to be played on the piano. In this step, all
the needed MIDI files are generated through the pre-trained models available in a bundle
format (“bach.mag” and “debussy.mag”). The Python script which generates these files is
the “performance_generator.py” and should be called without parameters. It will
generate 10 performances-rnn for each scene. The characteristics of each model used by this
script (and how they are used to generate sequences for each scene) is illustrated in the
table bellow:

2. Run the performance code. A parameter indicating the number of the scene (1, 2, or 3) should be
provided to the script “performance.py”. For instance, for scene 1: “python3
performance.py 1”. Once the code starts running, the live electronics performer controls
the effects and, to some extent, the MIDI data being sent to the piano, according to the
attached score. A XML file containing the configuration of audio objects and MIDI

https://github.com/tiagovaz/detaching
https://github.com/tiagovaz/detaching

assignments is provided in the repository (“carla_patch.carxp”). This file is to be used
by Carla audio plugin host software. Any other similar software can be used as long as the
following chain of effects is respected:

The audio effects in Carla can be assigned to a MIDI controller through its graphical
interface. The MIDI manipulation can be assigned by editing the “performance.py” script,
as documented in the code, by attributing the CC values to the variables listed in the above
table.

The following picture and table might be useful as a guidance for this configuration,
which supports a nanoKONTROL2 controller by Korg and was used in the video-recorded
performance available in https://archive.org/details/you-cant-uneighbor-your-neighbor.

Label Source Var name / plugin name Action

P ON Python code PEDAL_ON Disklavier sustain pedal ON

P OFF Python code PEDAL_OFF Disklavier sustain pedal OFF

WOBBLE Carla Wobble Juice Plugin Piano mechanics Wobblejuice effect gain

DL WET Carla Calf Vintage Delay Piano soundboard delay dry/wet

REV Carla Calf Reverb Piano soundboard reverb gain

DL FEED Carla Calf Vintage Delay Piano soundboard delay feed

https://archive.org/details/you-cant-uneighbor-your-neighbor

FL RES Carla Calf Filter Piano mechanics filter resonance

FL FREQ Carla Calf Filter Piano mechanics filter frequence

DL SPEECH Carla Calf Vintage Delay Speech (scene 3 only) delay dry/wet

SPEECH VOL Carla Carla Input Gain Speech volume (scene 3 only)

PAT VOL Python code PATTERN_VOL Controls the MIDI velocity average of algorithmic
musical patterns sent to the Disklavier

PAT SPEED Python code PATTERN_SPEED Controls the density (or tempo) of MIDI data of
algorithmic musical patterns sent to the Disklavier

CHAOS Python code CHAOS Adds chaos (random notes) to the performance-rnn
sequence being played on the Disklavier

PIANO GEN Python code PIANO_GEN Skips notes (replaces by silence) from the
performance-rnn sequence being played on the
Disklavier

Per scene instructions

This is a highly improvised piece, where both the pianist and the live electronics performer
follow very little instructions in order to accompany the AI-driven part being played. A sub-theme
taken from the quotation in the beginning of this score reflects the composer’s intentions and
should be kept in mind as inspiration.

The following instructions are nothing more than an open guide for the execution of the piece. This
comes from a collaborative work between composer Tiago Vaz and pianist Daniel Áñez, during
rehearsals and the performance recorded in December 2021 (https://archive.org/details/you-cant-
uneighbor-your-neighbor).

Scene 1 (3-4 min)

“First, you figure out who people are and what they like.”

This scene starts with a performance-rnn generated from a model trained against a dataset
of 29 pieces from Claude Debussy. It plays on average 5 notes per second, has a temperature of 1.4
– being the most “creative” among the three scenes – and follows a pitch distribution represented
as [0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 1, 1]. This distribution is structured as a Python list, in wich numbers
represent the probability of a note being played, from C to B. In this scene C = 0, C# = 1, D = 0, D#
= 2 and so forth. Given the hight level of “creativity”, these numbers are approximative. So, C = 0
doesn’t necessary mean “C is not to be played”. Instead, it can be read as “C is much less likely to be
played than D# - but still possible to be played”.

This scene is resonant, slow tempo and rich in wide-range chords. The musicians are
encouraged to attentively observe the sounds and try to extend them rather than adding new
sounds. A natural direction to long/continuous sounds should be followed. In the recorded video,
this was accomplished with the aid of e-bows resonating piano strings on the soundboard. The
whole scene shouldn’t go over a mezzo-forte dynamics.

During Scene 1, the live electronics performer mostly improvises with “PIANO GEN” and
“CHAOS” generators as described in the table above.

https://archive.org/details/you-cant-uneighbor-your-neighbor
https://archive.org/details/you-cant-uneighbor-your-neighbor

Scene 2 (6-7 min)

“Then, you provide them with content and services that best fit them.”

The performance-rnn which guides this scene was generated by a model trained against 147
pieces of J. S. Bach. Like Scene 1, it plays on average 5 notes per second, and has a little less “creativity”,
with temperature set to 1.3. Its pitch distribution is represented as [10, 1, 3, 10, 15, 1, 10, 10, 1, 10, 2,
10]. Unlike the other scenes, the performance-rnn for Scene 2 is additionally fed with with a primer, which
is the theme of Duetto in E minor (BWV 802). A music sheet with the first page of this piece should be on
the music desk.

Once the code starts running, the theme of BWV 802 is automatically played. The pianist just
observes, getting ready to react only a few bars later. This reaction might come from an attempt to create
a dialogue with the machine. A flawed counterpoint results from this attempt. Little by little, the gestures
develop toward another musical universe. This evolution reveals itself initially through modulations, then
moving toward new sonorities on the prepared piano's soundboard.

Except for the very beginning of this scene, most of MIDI data sent to the Disklavier is
manipulated by the live electronics performer, who triggers and controls algorithms that generate
pseudo-random motives. This is achieved using “PAT VOL” and “PAT SPEED” parameters. Compared to
Scene 1, here the musicians are encouraged to increase the dynamics to forte or even fortíssimo, yet
avoiding aggressive gestures and, like in Scene 1, ending the piece exploring resonance and continuous
sounds. Also, in this scene, the live electronics performer is encouraged to make further use of
“WOBBLE” and “DL WET” effects.

Scene 3 (5-6 min)

“Finally, you tune to get the fit just right.”

This scene, certainly the most “aggressive” among the three, is based on performances-rnn
generated in extremis, comprising an unusual pitch distribution of [0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0] at
20 notes per second on average. The level of creativity is lower than seen in previous scenes (0.7).
This means that notes marked with low probability are more unlikely to be played. Also, for Scene 3
the musicians should use a higher amount of effects, as well as an extra incitement material for the
performance, in the form of audible excerpts extracted from a conversation which inspired the
piece.

This conversation comes from a discussion between historian Yuval Harari and Facebook
CEO Mark Zuckerberg, and is part of a series of “public discussions about the future of technology
in society”, featured by Zuckerberg himself. The video is publicly available on Harari’s Youtube
channel.1

The scene starts with Zuckerberg’s proclaiming “Hey everyone, this year I’m doing a series of
public discussions on uh... the future of the Internet and Society and some of the big issues around that...”,
followed by the generated performance-rnn. From its very beginning, this scene reveals a certain
anxiety, insistence, and lack of direction. Musicians are encouraged to musically represent these
intentions through repetition, contrast and mechanical/powerful gestures. Audio excerpts from the
same conversation are played all over the piece, motivating immediate reactions from the musicians.

The only direction this scene takes is toward a dramatic crescendo in the end, when it goes
back down to a non-dramatic repetitive gesture, which should somewhat represent that we
ultimately have been tuned to fit just right.

1 Mark Zuckerberg & Yuval Noah Harari in Conversation: https://www.youtube.com/watch?v=Boj9eD0Wug8

main.py

1 from pyo import *
2 import mido
3 import random
4 import time
5
6 ####### MIDI CC variables ##########
7
8 PEDAL_ON = 43
9 PEDAL_OFF = 44

10 PATTERN_ON = 37
11 PATTERN_OFF = 53
12 PATTERN_VOL = 21
13 PATTERN_SPEED = 5
14 CHAOS = 6
15 RNN_ON = 39
16 RNN_OFF = 55
17 PIANO_GEN = 7
18
19 ####################################
20
21 # DEV means using internal midi ports
22 DEV = True
23
24 s = Server(audio=’jack’, duplex=0)
25
26 # Randomly set the midi file to be picked from a subset
27 midi_pick = str(random.randint(1, 5))
28
29 # Set the movement to be played:
30 mov = 1
31
32 # 1)
33 mov_01_midi_file = ’MIDI/01/’ + random.choice(os.listdir("MIDI/01/"))
34
35 # 2)
36 mov_02_midi_file = ’MIDI/02/’ + random.choice(os.listdir("MIDI/02/"))
37
38 # 3)
39 mov_02_midi_file = ’MIDI/03/’ + random.choice(os.listdir("MIDI/03/"))
40
41 s.setMidiOutputDevice(99)
42 s.setMidiInputDevice(99)
43 s.boot().start()
44
45 if DEV is True:
46 port = mido.open_output(’Midi Through:Midi Through Port-0 14:0’)
47 else:
48 port = mido.open_output(’io|2:io|2 MIDI 1 28:0’)
49

1

2

50 conversation = "conversation.flac"
51 sf = SfPlayer(conversation, speed=1, loop=True, mul=0).stop()
52
53 midi_play = False
54 pattern_play = False
55
56 def midi_scanner(ctlnum, midichnl):
57 global midi_play
58 global pattern_play
59 if ctlnum == RNN_ON:
60 midi_play = True
61 elif ctlnum == RNN_OFF:
62 midi_play = False
63 elif ctlnum == PATTERN_ON:
64 pattern_play = True
65 elif ctlnum == PATTERN_OFF:
66 pattern_play = False
67 elif ctlnum == PEDAL_ON:
68 s.ctlout(64, 127)
69 elif ctlnum == PEDAL_OFF:
70 s.ctlout(64, 0)
71 elif ctlnum == 42:
72 sf.setMul(0)
73 elif ctlnum == 41:
74 sf.out()
75 sf.setMul(0.02)
76
77
78 # Listen to controller input.
79 midi_in = CtlScan2(midi_scanner, toprint=True)
80
81 counter = 0
82 counter_tick = 0
83
84 velocity = Randi(min=50, max=100, freq=1)
85
86 ctl_skip_notes = Midictl(ctlnumber=[PIANO_GEN], minscale=0, maxscale=10, init=0)
87 ctl_chaos = Midictl(ctlnumber=[CHAOS], minscale=0, maxscale=10, init=0)
88
89 ########################## PATTERN ###################################
90
91 ctl_pattern_time = Midictl(ctlnumber=[PATTERN_SPEED], minscale=0.05, maxscale=1, init

=0.125)
92 ctl_pattern_velocity = Midictl(ctlnumber=[PATTERN_VOL], minscale=0, maxscale=70, init=21)
93
94 l = Phasor(.4)
95 pitch = XnoiseMidi(12, freq=8, x1=1, x2=l, scale=0, mrange=(21, 108))
96
97 # Global variable to count the down and up beats.
98 count = 0
99

3

100 def midi_event():
101 if pattern_play == True:
102 global count
103 pit = int(pitch.get())
104 if count == 0:
105 vel = random.randint(int(ctl_pattern_velocity.get()), int(

ctl_pattern_velocity.get()) + 30)
106 dur = 500
107 else:
108 vel = random.randint(int(ctl_pattern_velocity.get()), int(

ctl_pattern_velocity.get()) + 10)
109 dur = 125
110 count = (count + 1) % random.randint(2,5)
111 pat.setTime(float(ctl_pattern_time.get()))
112 s.makenote(pitch=pit, velocity=vel, duration=dur)
113
114 pat = Pattern(midi_event, time=0.125).play()
115
116 ###################### MAIN LOOP #####################################
117
118 while True:
119 if mov == 1:
120 mid = mido.MidiFile(mov_01_midi_file)
121 for message in mid.play():
122 if (counter_tick % 100) == 0:
123 tick = mido.Message(’note_on’, channel=0, note=random.choice([10, 99,

101]), velocity=80, time=6.2)
124 tick_off = mido.Message(’note_off’, channel=0, note=99)
125 counter_tick = 0
126
127 if not message.is_meta:
128 # PAUSE
129 if midi_play is True:
130 # SKIP NOTES
131 if random.randint(0, int(ctl_skip_notes.get())) == 0:
132 print(’CONTROLLER IN %d’ % int(ctl_skip_notes.get()))
133 if random.randint(0, int(ctl_chaos.get())) == 0:
134 print(’CONTROLLER IN %d’ % int(ctl_skip_notes.get()))
135 port.send(message)
136 else:
137 # CHAOS
138 s.makenote(pitch=random.randint(48,82), velocity=random.

randint(20,50), duration=random.randint(1,1000))
139 else:
140 while midi_play is False:
141 print(’wating for resume...’)
142 time.sleep(1)
143 counter = counter + 1
144 counter_tick = counter_tick + 1
145 print(counter_tick)
146

4

147 elif mov == 2:
148 mid = mido.MidiFile(mov_03_midi_file)
149 for message in mid.play():
150 if counter == 500:
151 delay = random.choice([10,12,15])
152 time.sleep(delay)
153 if (counter_tick % 100) == 0:
154 tick = mido.Message(’note_on’, channel=0, note=random.choice([10, 99,

101]), velocity=80, time=6.2)
155 tick_off = mido.Message(’note_off’, channel=0, note=99)
156 port.send(tick)
157 port.send(tick_off)
158 counter_tick = 0
159
160 if not message.is_meta:
161 if message.type == ’note_on’:
162 message.velocity = max(0, message.velocity + int(velocity.get()))
163 if counter > 50: # modulate
164 if message.note == 69:
165 message.note = 70
166 if counter > 100: # modulate
167 if message.note == 74:
168 message.note = 75
169 if counter > 150: # do not play
170 if message.note == 76:
171 continue
172 port.send(message)
173 # print(message)
174 counter = counter + 1
175 counter_tick = counter_tick + 1
176 print(counter_tick)
177
178 elif mov == 3:
179 mid = mido.MidiFile(mov_03_midi_file)
180 for message in mid.play():
181 if midi_play is True:
182 if message.type == ’note_on’ or message.type == ’note_off’:
183 port.send(message)
184 else:
185 while midi_play is False:
186 print(’wating for resume...’)
187 time.sleep(1)

